viernes, 10 de octubre de 2008

MATERIALES DE CONSTRUCCION, EL CEMENTO

Cemento

Se denomina cemento a un conglomerante hidráulico que, mezclado con agregados pétreos (árido grueso o grava, más árido fino o arena) y agua, crea una mezcla uniforme, maleable y plástica que fragua y se endurece al reaccionar con el agua, adquiriendo consistencia pétrea, denominado hormigón o concreto. Su uso está muy generalizado en construcción e ingeniería civil, siendo su principal función la de aglutinante.

Reseña Histórica

Desde la antigüedad, se emplearon pastas y morteros elaborados con arcilla, yeso o cal para unir mampuestos en las edificaciones. Fue en la Antigua Grecia cuando empezaron a usase tobas volcánicas extraídas de la isla de Santorini, los primeros cementos naturales. En el siglo I a. C. se empezó a utilizar el cemento natural en la Antigua Roma, obtenido en Pozzuoli, cerca del Vesubio. La bóveda del Panteón es un ejemplo de ello. En el siglo XVIII John Smeaton construye la cimentación de un faro en el acantilado de Edystone, en la costa Cornwall, empleando un mortero de cal calcinada. El siglo XIX, Joseph Aspdin y James Parker patentaron en 1824 el Portland Cement, denominado así por su color gris verdoso oscuro. Isaac Johnson, en 1845, obtiene el prototipo del cemento moderno, con una mezcla de caliza y arcilla calcinada a alta temperatura. En el siglo XX surge el auge de la industria del cemento, debido a los experimentos de los químicos franceses Vicat y Le Chatelier y el alemán Michaélis, que logran cemento de calidad homogénea; la invención del horno rotatorio para calcinación y el molino tubular y los métodos de transportar hormigón fresco ideados por Juergen Hinrich Magens que patenta entre 1903 y 1907.

Clases de cemento

Se pueden establecer dos tipos básicos de cementos:

  1. de origen arcilloso: obtenidos a partir de arcilla y piedra caliza en proporción 1 a 4 aproximadamente;
  2. de origen puzolánico: la puzolana del cemento puede ser de origen orgánico o volcánico.

Existen diversos tipos de cemento, diferentes por su composición, por sus propiedades de resistencia y durabilidad, y por lo tanto por sus destinos y usos.

Desde el punto de vista químico se trata en general de una mezcla de silicatos y aluminatos de calcio, obtenidos a través del cocido de calcáreo, arcilla y arena. El material obtenido, molido muy finamente, una vez que se mezcla con agua se hidrata y solidifica progresivamente. Puesto que la composición química de los cementos es compleja, se utilizan terminologías específicas para definir las composiciones.

El cemento Portland

El tipo de cemento más utilizado como aglomerante para la preparación del hormigón o concreto es el cemento Portland.

Cuando el cemento Portland es mezclado con el agua, se obtiene un producto de características plásticas con propiedades adherentes que solidifica en algunas horas y endurece progresivamente durante un período de varias semanas hasta adquirir su resistencia característica.

Con el agregado de materiales particulares al cemento (calcáreo o cal) se obtiene el cemento plástico, que fragua más rápidamente y es más fácilmente trabajable. Este material es usado en particular para el revestimiento externo de edificios.

Cementos Portland especiales

Los cementos Portland especiales son los cementos que se obtienen de la misma forma que el Portland, pero que tienen características diferentes a causa de variaciones en el porcentaje de los componentes que lo forman.

Portland férrico

El Portland férrico está caracterizado por un módulo de fundentes de 0,64. Esto significa que este cemento es muy rico en hierro. En efecto se obtiene introduciendo cenizas de pirita o minerales de hierro en polvo. Este tipo de composición comporta por lo tanto, además de una mayor presencia de Fe2O3, una menor presencia de 3CaOAl2O3 cuya hidratación es la que desarrolla más calor. Por este motivo estos cementos son particularmente apropiados para ser utilizados en climas cálidos. Los mejores cementos férricos son los que tienen un módulo calcáreo bajo, en efecto estos contienen una menor cantidad de 3CaOSiO2, cuya hidratación produce la mayor cantidad de cal libre (Ca(OH)2). Puesto que la cal libre es el componente mayormente atacable por las aguas agresivas, estos cementos, conteniendo una menor cantidad, son más resistentes a las aguas agresivas.

Cementos blancos

Contrariamente a los cementos férricos, los cementos blancos tienen un módulo de fundintes muy alto, aproximadamente 10. Estos contienen por lo tanto un porcentaje bajísimo de Fe2O3. EI color blanco es debido a la falta del hierro que le da una tonalidad grisácea al Portland normal y un gris más obscuro al cemento ferrico. La reducción del Fe2O3 es compensada con el agregado de fluorita (CaF2) y de criolita (Na3AlF6), necesarios en la fase de fabricación en el horno para bajar la calidad del tipo de cemento que hoy en día hay 4: que son tipo I 52,5, tipo II 52,5, tipo II 42,5 y tipo II 32,5;también llamado pavi) se le suele añadir una adición extra de caliza que se le llama clinkerita para rebajar el tipo, ya que normalmente el clinker molido con yeso sería tipo I

Cementos de mezclas

Los cementos de mezclas se obtienen agregando al cemento Portland normal otros componentes como la puzolana. El agregado de estos componentes le da a estos cementos nuevas características que lo diferencian del Portland normal.

Cemento puzolánico

Se denomina puzolana a una fina ceniza volcánica que se extiende principalmente en la región del Lazio y la Campaña, su nombre deriva de la localidad de Pozzuoli, en las proximidades de Nápoles, en las faldas del Vesubio. Posteriormente se ha generalizado a las cenizas volcánicas en otros lugares. Ya Vitrubio describía cuatro tipos de puzolana: negra, blanca, gris y roja.

Mezclada con cal (en la relación de 2 a 1) se comporta como el cemento puzolánico, y permite la preparación de una buena mezcla en grado de fraguar incluso bajo agua.

Esta propiedad permite el empleo innovador del hormigón, como ya habían entendido los romanos: El antiguo puerto de Cosa fue construido con puzolana mezclada con cal apenas antes de su uso y colada bajo agua, probablemente utilizando un tubo, para depositarla en el fondo sin que se diluya en el agua de mar. Los tres muelles son visibles todavía, con la parte sumergida en buenas condiciones después de 2100 años.

La puzolana es una piedra de naturaleza ácida, muy reactiva, al ser muy porosa y puede obtenerse a bajo precio. Un cemento puzolánico contiene aproximadamente:

  • 55-70% de clinker Portland
  • 30-45% de puzolana
  • 2-4% de yeso

Puesto que la puzolana se combina con la cal (Ca(OH)2), se tendrá una menor cantidad de esta última. Pero justamente porque la cal es el componente que es atacado por las aguas agresivas, el cemento puzolánico será más resistente al ataque de éstas. Por otro lado, como el 3CaOAl2O3 está presente solamente en el componente constituido por el clinker Portland, la colada de cemento puzolánico desarrollará un menor calor de reacción durante el fraguado. Este cemento es por lo tanto adecuado para ser usado en climas particularmente calurosos o para coladas de grandes dimensiones.

Cemento siderúrgico

La puzolana ha sido sustituida en muchos casos por la ceniza de carbón proveniente de las centrales termoeléctricas, escoria de fundiciones o residuos obtenidos calentando el cuarzo. Estos componentes son introducidos entre el 35 hasta el 80%. El porcentaje de estos materiales puede ser particularmente elevado, siendo que se origina a partir de silicatos, es un material potencialmente hidráulico. Esta debe sin embargo ser activada en un ambiente alcalino, es decir en presencia de iones OH-. Es por este motivo que debe estar presente por lo menos un 20 % de cemento Portland normal. Por los mismos motivos que el cemento puzolanico, el cemento siderúrgico también tiene buena resistencia a las aguas agresivas y desarrolla menos calor durante el fraguado. Otra característica de estos cementos es su elevada alcalinidad natural, que lo rinde particularmente resistente a la corrosión atmosférica causada por los sulfatos.

Cemento de fraguado rápido

El cemento de fraguado rápido, también conocido como "cemento romano ó prompt natural", se caracteriza por iniciar el fraguado a los pocos minutos de su preparación con agua. Se produce en forma similar al cemento Portland, pero con el horno a una temperatura menor (1.000 a 1.200 ºC). Es apropiado para trabajos menores, de fijaciones y reparaciones, no es apropiado para grandes obras porque no se dispondría del tiempo para efectuar una buena colada. Aunque se puede iniciar el fraguado controlado mediante retardantes naturales (E-330) como el ácido cítrico, pero aún así si inicia el fraguado aprox. a los 15 minutos (temperatura a 20ºC). La ventaja es que al pasar aprox. 180 minutos de inciado del fraguado, se consigue una resitencia muy alta a la compresión (entre 8 a 10 MPa), por lo que se obtiene gran prestación para trabajos de intervención rápida y definitivos. Hay cementos rápidos que pasados 10 años, obtienen resistencia a la compresión superior algunos hormigones armados (pasan en la gráfica de 60 MPa).

Cemento aluminoso

El cemento aluminoso se produce a partir principalmente de la bauxita con impurezas de óxido de hierro (Fe2O3), óxido de titanio (TiO2) y óxido de silicio (SiO2). Adicionalmente se agrega calcáreo o bien carbonato de calcio. El cemento aluminoso, también llamado «cemento fundido», por lo que la temperatura del horno alcanza hasta los 1.600°C y se alcanza la fusión de los componentes. El cemento fundido es colado en moldes para formar lingotes que serán enfriados y finalmente molidos para obtener el producto final.

El cemento aluminoso tiene la siguiente composición de óxidos:

  • 35-40% óxido de calcio
  • 40-50% óxido de aluminio
  • 5% óxido de silicio
  • 5-10% óxido de hierro
  • 1% óxido de titanio

Por lo que se refiere a sus reales componentes se tiene:

  • 60-70% CaOAl2O3
  • 10-15% 2CaOSiO2
  • 4CaOAl2O3Fe2O3
  • 2CaOAl2O3SiO2

Por lo que se refiere al óxido de silicio, su presencia como impureza tiene que ser menor al 6 %, porque el componente al que da origen, es decir el (2CaOAl2O3SiO2) tiene pocas propiedades hidrófilas (poca absorción de agua).

Proceso de fabricación

Fabrica de Cemento

Existe una gran variedad de cementos según la materia prima base y los procesos utilizados para producirlo, que se clasifican en procesos de vía seca y procesos de vía húmeda.

El proceso de fabricación del cemento comprende cuatro etapas principales:

  1. Extracción y molienda de la materia prima
  2. Homogeneización de la materia prima
  3. Producción del Clinker
  4. Molienda de cemento.

La materia prima para la elaboración del cemento (caliza, arcilla, arena, mineral de hierro y yeso) se extrae de canteras o minas y, dependiendo de la dureza y ubicación del material, se aplican ciertos sistemas de explotación y equipos. Una vez extraída la materia prima es reducida a tamaños que puedan ser procesados por los molinos de crudo.

La etapa de homogeneización puede ser por vía húmeda o por vía seca, dependiendo de si se usan corrientes de aire o agua para mezclar los materiales. En el proceso húmedo la mezcla de materia prima es bombeada a balsas de homogeneización y de allí hasta los hornos en donde se produce el clínker a temperaturas superiores a los 1500 °C. En el proceso seco, la materia prima es homogeneizada en patios de materia prima con el uso de maquinarias especiales. En este proceso el control químico es más eficiente y el consumo de energía es menor, ya que al no tener que eliminar el agua añadida con el objeto de mezclar los materiales, los hornos son más cortos y el clínker requiere menos tiempo sometido a las altas temperaturas.

El clínker obtenido, independientemente del proceso utilizado en la etapa de homogeneización, es luego molido con pequeñas cantidades de yeso para finalmente obtener cemento.

Almacenamiento del cemento

El cemento es una sustancia particularmente sensible a la acción del agua y de la humedad, por lo tanto para salvaguardar sus propiedades, se deben tener algunas precauciones muy importantes, entre otras: Inmediatamente después de que el cemento se reciba en el área de las obras si es cemento a granel, deberá almacenarse en depósitos secos, diseñados a prueba de agua, adecuadamente ventilados y con instalaciones apropiadas para evitar la absorción de humedad.

Si es cemento en sacos, deberá almacenarse sobre parrillas de madera o piso de tablas; no se apilará en hileras superpuestas de más de 14 sacos de altura para almacenamiento de 30 días, ni de más de 7 sacos de altura para almacenamientos hasta de 2 meses. Para evitar que el cemento envejezca indebidamente, después de llegar al área de las obras, el contratista deberá utilizarlo en la misma secuencia cronológica de su llegada. No se utilizará bolsa alguna de cemento que tenga más de dos meses de almacenamiento en el área de las obras, salvo que nuevos ensayos demuestren que está en condiciones satisfactorias.

Impacto ambiental de la industria del cemento

La industria del cemento tiene un impacto ambiental negativo importante para la salud, en función de su localización con relación a centros poblados.

La industria del cemento incluye las instalaciones con hornos que emplean el proceso húmedo o seco para producir cemento de piedra caliza, y las que emplean agregado liviano para producirlo a partir de esquisto o pizarra. Se utilizan hornos giratorios que elevan los materiales a temperaturas de 1400 ºC. Las materias primas principales son piedra caliza, arena de sílice, arcilla, esquisto, marga y óxidos de tiza. Se agrega sílice, aluminio y hierro en forma de arena, arcilla, bauxita, esquisto, mineral de hierro y escoria de alto horno. Se introduce yeso durante la fase final del proceso. La tecnología de hornos de cemento se emplea en todo el mundo. Usualmente, las plantas de cemento se ubican cerca de las canteras de piedra caliza a fin de reducir los costos de transporte de materia prima.

Impactos ambientales potenciales

Las plantas de cemento pueden tener impactos ambientales positivos en lo que se relaciona con el manejo de los desechos, la tecnología y el proceso son muy apropiados para la reutilización o destrucción de una variedad de materiales residuales, incluyendo algunos desperdicios peligrosos. Asimismo, el polvo del horno que no se puede reciclar en la planta sirve para tratar los suelos, neutralizar los efluentes ácidos de las minas, estabilizar los desechos peligrosos o como relleno para el asfalto.

Los impactos ambientales negativos de las operaciones de cemento ocurren en las siguientes áreas del proceso: manejo y almacenamiento de los materiales (partículas), molienda (partículas), y emisiones durante el enfriamiento del horno y la escoria (partículas o "polvo del horno", gases de combustión que contienen monóxido (CO) y dióxido de carbono (CO2), hidrocarburos, aldehídos, cetonas, y óxidos de azufre y nitrógeno). Los contaminantes hídricos se encuentran en los derrames del material de alimentación del horno (alto pH, sólidos suspendidos, sólidos disueltos, principalmente potasio y sulfato), y el agua de enfriamiento del proceso (calor residual). El escurrimiento y el líquido lixiviado de las áreas de almacenamiento de los materiales y de eliminación de los desechos puede ser una fuente de contaminantes para las aguas superficiales y freáticas.

El polvo, especialmente la sílice libre, constituye un riesgo importante para la salud de los empleados de la planta cuya exposición provoca la silicosis. Algunos de los impactos mencionados pueden ser evitados completamente, o atenuados más exitosamente, si se escoge el sitio de la planta con cuidado.

Emisiones de partículas a la atmósfera

La fabricación de cemento incluye el transporte de materiales polvorientos o pulverizados desde la cantera de piedra caliza, hasta el embarque del producto terminado para envío. Las partículas son la causa más importante del impacto ambiental negativo. Los precipitadores electrostáticos, o los filtros de bolsa, constituyen un requerimiento rutinario para controlar las emisiones de partículas de los hornos. El control del polvo que resulta del transporte de los materiales es uno de los desafíos más difíciles; las bandas transportadoras, pilas de acopio, y caminos de la planta, pueden ser causas más importantes de degradación de la calidad del aire, que las emisiones del molino y el horno. Se deben emplear recolectores mecánicos de polvo donde sea práctico, por ejemplo, en los trituradores, transportadores y el sistema de carga. En la mayoría de los casos, el polvo recolectado puede ser reciclado, reduciendo el costo y disminuyendo la producción de desechos sólidos. Se puede mantener limpios los camiones de la planta con aspiradoras y/o rociadores, a fin de eliminar el polvo atmosférico causado por el tráfico y el viento. Deben ser cubiertas las pilas de acopio tanto como sea posible. Los camiones que transportan materiales a la planta y fuera de ésta deben tener carpas y limites de velocidad.

Proceso del Cemento

En las plantas del proceso "seco", se alimentan al horno las materias primas secas. El único efluente es el agua de enfriamiento, y ésta puede ser eliminada con torres de enfriamiento o piscinas. En el proceso "Mimedo", se alimentan las materias primas al horno en forma de una lechada. En algunos casos, las plantas pueden lixiviar el polvo del horno que se ha recolectado, a fin de eliminar el álcali soluble antes de volver a alimentarlo al horno. En estas plantas, el rebosamiento del clarificador del proceso de lixiviación constituye la fuente mis severa de contaminación hídrica; requiere neutralización (posiblemente mediante carbonicen) antes de descargarlo.

Uso de los hornos de cemento para reciclar o eliminar los desechos

Los desechos de aceite, solventes, residuos de pintura y otros desperdicios inflamables, han sido utilizados como combustibles suplementarios para los hornos de cemento. Esta práctica comenzó en los Estados Unidos en 1979, para conservar energía y reducir los costos de combustible, y ha sido satisfactorio en términos, tanto de la calidad del producto, como el impacto ambiental. Además, algunos desechos sólidos pueden ser utilizados como combustibles, tal como las llantas gastadas. Los requerimientos de materia prima pueden ser satisfechos, parcialmente, con los desperdicios (rutinariamente usados) de otras industrias: yeso de las plantas de ácido fosfórico, piritas tostadas de la producción de ácido sulfúrico, escoria de los altos hornos, y ceniza de las plantas termoeléctricas a carbón.

La alta temperatura de la llama y la naturaleza del producto hacen que los hornos de cemento sean atractivos para destruir una variedad de materiales orgánicos peligrosos. Manejados correctamente, los hornos constituyen una alternativa mucho menos costosa que los incineradores de desechos. Las pruebas realizados por la Agencia de Protección Ambiental de los EE.UU. y otros, han demostrado que la destrucción de los compuestos orgánicos, incluyendo PCB y los pesticidas organocloruros y órgano fósforos, iguala o supera los resultados logrados por los incineradores de desperdicios peligrosos que operan a temperaturas más bajas. Muchos compuestos metálicos tóxicos pueden ser quemados en los hornos de cemento en cantidades que sean suficientemente pequeñas, y que no afecten negativamente la calidad del producto, ni la seguridad, porque se vinculan a la escoria y llegan a formar parte del producto. El plomo, sin embargo, requiere atención especial; hasta la mitad de la cantidad introducida sale del horno y se precipita con el polvo del horno. El reciclaje del polvo aumenta la concentración del plomo hasta el punto en que éste, también, se vincula a la escoria, pero una cantidad pequeña (0.2 a 1.0 por ciento) se escapa con los gases de la chimenea. Talium se emite con el humo del horno, es decir, no se liga a los sólidos. Los estudios del comportamiento del mercurio, hasta la década de los 90, han sido inconclusos.

Referencias

  • Libro de Consulta para Evaluación Ambiental (Volumen I; II y III). Trabajos Técnicos del Departamento de Medio Ambiente del Banco Mundial